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In many complex systems, for the activity of the constituents or nodeésa power-law relationship was
discovered between the standard deviatigrand the average strength of the activity (f;)%; universal
valuesa=1/2 or 1 werefound, however, with exceptions. With the help of an impact variable we present a
random walk model where the activity is the product of the number of visitors at a node and their impact. If the
impact depends strongly on the node connectivity and the properties of the carrying network are broadly
distributed(as in a scale-free networkve find both analytically and numerically nonuniversalalues. The
exponent always crosses over to the universal value of 1 if the external drive dominates.
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Complex systems usually consist of many interactingeven without outsidéhumar) interaction, due to automatic
units such that their scaffold is a network. The most puzzlingqueries, data transfer, etc. On the other hand, the latter con-
questions are usually the ones regarding the dynamics dists of Web pages whose activity is generated by external
such systems. Examples range from traffiehicular or In-  demand(i.e., the clicks of usejs
terne} through the biochemistry of the cell to markets which  For such an analysis multichannel monitoring of a large
are systems generated by human interactions. Due to its genumber of elements is heeded with a possibly broad range of
erality, the network aspect has turned out to be extremelyf;). A previous work[2] introduced a method of decompo-
fruitful in these studies, but the dynamics is usually rathersition to separate the effects of an external driving force from
individual, system dependent. However, recently an interesthe system’s internal dynamics originating from the constitu-
ing unifying feature was found in systems with multichannelents’ individual behavior and interactions. Furthermore,
observations. when external driving was absent or subordinate;1/2

Processes taking place in many complex systems can kemed to hold for every investigated system, though univer-
characterized by generalized activitig$t)=0, defined at sality could not be proven. In fact, more recent studies have
each constituent or node=1,...,N. For a wide range of shown that there are exceptions from this rule: Fluctuations
systems, researdi—3] has revealed power-law scaling be- of stock market trading activitytraded volume times prige
tween the mean and the standard deviation of the activity ohre characterized by~ 0.72[3]. In this paper, we present a

the nodes generalization of a random walk model by Menezes and
N Barabasi[1], which accounts for such anomalousvalues
a; o (f), 1) and clarifies their microscopic origins.
where by definition The model in Ref[1] was motivated by the statistics of
Web page visitations and we will also use this language. Let
o, = {(f, = (F)?). (2 us take a scale-free Barabasi-Albert network Ndofnodes

. . I - (Web pagep[4,5]. First, we distributeV tokens(users, walk-
. This is not ur]motlvated from equilibrium statlstlcalip.hys— er9 on the nodes randomly. In every time step every walker
ics. Many phys.'ca?' systems belqng to the.(':lan.ssllz, n jumps from its present site to a random neighbor of the site
most cases th's is the f'”gerp””t of equilibrium and th_ealong an edgédink). The new feature is that if a user steps to
dominance of internal dynamics. Examples of such behavio site, it has to pay a certain valii) (exerts a certain
impacd, which depends on the degrki) of the visited node

are a computer chip or the hardware level Inter(tle¢ net-
work of data transmissior1]. : ;
more popular pages with more links cost more moreeya

One can show analytically the existence of a universalit

class witha=1. This value always prevails in the presence ofPOWer law

a strong driving force, when the dominant factor is such V(i) o k(i) 3)
externally imposed dynamics. This limit is found for river '

networks, highway traffic and the World Wide Web|. We must emphasize, that although this is a simplification, the

It is instructive to recall that although only different as- assumption is noad hoc For example, the average activity
pects of the same system, the Internet and the Web fall '_”Ffbr a given stock was found to scale with the expongnt
separate categories. The former has a robust internal activity g 44 as a function of the capitalization of the companies

[8], which, in a sense, can be identified with the nodes’
strength. This application will be discussed in detail.

*Electronic address: eisler@maxwell.phy.bme.hu We continue the diffusion fof steps and finally calculate
TAlso at Laboratory of Computational Engineering, Helsinki Uni- the total profit of every Web site, which equals ti€) num-
versity of Technology, Espoo, Finland. ber of visitations multiplied by/(i); these values will be the

1539-3755/2005/71%5)/0571044)/$23.00 057104-1 ©2005 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW H1, 057104(2005

activities f;(t=1) of the nodes on day 1. We iterate this pro- ' ' ' ' '
cedure for the same network for1,...,D days to generate 102: :
the whole time serie§(t). The original variant presented in ] ]

Ref.[1] corresponds to the special cgse0: it only counts ]
N(i) for each node. Later we will address the case when the 10
V(i) values are allowed to fluctuate. 5 1 Value of uff
We expect a power-law scaling relationship such as .1 . '8-51
107+ ..
. . + 05
(N(@)) == k(i) (4) 1 . 100
E *~ 20H
i.e., the mean number of the visitations to a node is propor- 107 1 , . , :
tional to its degree. Higher connected vertices should have 10" 10> 10° 10* 10°

higher traffic. Stationary solution of the master equation <f>

yields v=1 analytically, in line with Ref[6]. Also, if initially . o o
tokens are distributed uniformly, after the first step the ex- FIG. 1. Scaling of the standard deviation of node activity with

pectation value of the number of tokens at any node will bd"€ mean signal of the same node. A single point in the graph
directly proportional to its degree. Therefore the modelrepresents the average standard deviation of all nodes with approxi-

. . mately the same flux. Slopes on the log-log scale give the internal
reaches the stationary state in one step. For the sake of gen- ~°. . . o .

; : . dynamical exponent. Varying the impact distribution by changing
erality we will keep the notation for a general value f

. . - causes a continuous changedinas expected fron(7).
which could be generated by different dynamics. # gean P ")
We can write the mean profit of nodeas

(fiy = (N()V(i)) o< k(i) (5) . . . o

X is drawn independently from a fixed distribution for every
Fluctuations can be expressed by the application of the ceRjsitation of nodd. It is also assumed to have a finite second
tral limit theorem. As walkers do not interact, their visits are moment.
independent, and thus for large enougi(i)) and finite The distributions oN(i) and V(i) are independent and so
(N(i)? the distribution converges to a Gaussian. Moreoverthey factorize in(5), whose formula hence remains un-
the variance of the visits at nodeis oﬁ;([N(i)—(N(i))]Z} changed. In order to prove that scaling suggeste(Gpglso
o« (N(i)) = k(i)*. The variance of the signal detected on node persists, let us write
can then be written as N N 2
o2 = 202 o k(i) 2, ©) of = (21 Vi -{ 2 Vi) ) , 9)

n=1

V(i) = V(i) X o k(i)#X. 8

where the proportionality comes frof3). Finally, one can

combine(5) and (6) to get wheren runs for all theN visits to sitei during the day and

V,(n) is the profit from thenth visit. By denoting=\_,Vi(n)

1 wulv as V), its density function as’(Vy), and that ofN(i) by
a= 5( m) ) P(N), it is possible to rewrit¢9) as

«a is the internal dynamical exponent defined @y in the 1.00 : : : : : :
absence of external forces. e T

We performed simulations of such a process and found 0.754 ‘./*
perfect agreement with the above calculation. We fixed &~
a Barabasi-Albert  network  of N=2000 nodes, 0.504 [i
W=200 tokens;T=100 steps per day, and averaged oler 3 /
=10° days. We also variege=-0.5, ..., 5.0. Examples for ozsl [
the scaling relatior(1) are shown in Fig. 17]. There is a )
clear dependence of the slope on the valug.oThe mea- 0.004 4' + data points
sured exponents, compared with the analytical formula are L _ caloulated value
shown in Fig. 2. 4 0 1 2 3 4 5

The right-hand side of7) is governed by the single pa- H
rameteru/v. By settingu=0, we recover the original, non- 1z 5 (color onling The values of the internal dynamical

independent impacts ane=1/2. If u/v>0, the scaling ex-  gyponentq as a function ofu governing the distribution of node-
ponent of fluctuations increases,>1/2. As u/v—=, @ = gependent impacts. Circles show simulation resuils!
—1, which is the same exponent but due to a different- 000 nodesyv=200 walkers T=100 steps/day, averaged for
mechanism a&=1 arising from strong driving. Note that by =1 days. The solid line represents the analytical form(f for

choosingu/v<0, a<1/2 values are also accessible. »=1. By settingu=0, we recovera=1/2, which is observed for

This result is robust against fluctuations\ini.e., if dif-  several equilibrium systems. If one allows for node-dependent im-
ferent users spend different amounts of money while visitingpacts (x # 0), nonuniversal behavior emerges aadcan change
the same Web page, provided continuously between 0 and 1.
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o?= 2 P(N) f dVP(VVA 1.0
= 0
0 2 08'
—| 2 PN | dWP(VV | (10) s Value ofu
N=0 2 0.6 740y
3 ) ——20
By both adding and subtracting the term 0.4. ::,:g |
SneoP(N[[GdVWP(Vy) V% then applying the equality [ B %
JodVWP (V) V=N(V(i)) and that for any fixedN the vari- 0.2 . . ' _
ance ofVy is 04 =No?, one finally finds 102 10" 10° 10’
N AW/<W>
af = oV + ol (N < k(D)2 (1D

FIG. 3. Measured values ak as a function of the relative
The final proportionality comes from similar arguments as instrength of driving forcd AW/(W)) for several fixed values of.
the case of(6). In particular, we know thaioZ;«(N(i))  (N=2000 nodesW=200 walkers T=100 steps/day, averaged for
xk(i)”. On the other hand, with respect to scaling with theD=10° days. Although the internal valueAW/(W) <1) varies, all
node degreek(i), we definedV(i)2ck(i)24, while a|500% systems display the universal behavior 1 in the exogenous limit
e k(l)z,u (AW/<\N>> 1).

One can see explicitly the new source that contributes to

fluctuations. The first term, basically the same as before,

comes from diffusive dynamics. The second, additional termf'me' This shows, that across the nodes of this syster-

is the one that describes the effect of visit to visit variationserg only the number of packets varies, but their size does not

present in impact¥(i). Regardless of this more complicated (#=0). This homogeneous dynamics can be expected. AS t'he
structure, the scaling o6 with the vertex degred(i) is same packets pass many computers, the mean of their sizes

preserved, similarly tgf;). Thus the dynamical exponent can well be independent of node degree.

. . . . s Although not readily represented as a network, a similar
is un'affected.. Slmulathns based on various distribution$ of analysis can be carried out on stock market da@. Here,
confirmed this calculation.

Next, in order to analyze the behavior of the system undep(t) 'S the value.of-stocks of the companypought "’?”d’or
. ) sold at timet,{N(i)) is the mean number of transactions per
the influence of an external drive, we allowed day to day

changes in the number of walkeéné Following Ref.[1], we u_nit time, andV(i) is the value of St.OCk.S exchanged in a
introduced W(t)=(W)+AW(t), where AW(t) is Gaussian single trade. The role of degréeode siz¢is taken by com-

white noise with standard deviatiaxW [9]. This acts as an pany capitalization. In this case, it has been found that

external driving force and contributes to fluctuations. It is.zo'39 andu~0.44[8]. This is direct evidence for the ex-

known, that increasindW toward the strongly driven limit istence of scaling proposed (®). Accordingly, a has the

(AW/(W)> 1), any system displays a crossoverds1 as a nontrivial value 0.743], due to the presence of inhomoge-
’ neous impacts.

sign of the growing dominance of exogenous behavior. We If the dynamics that generates the activitfe®) is much

used the above set of parameters and vaf¥/(W)=>5 slower than the method used to record them, one can observe

3 .
x107,..., 15.' For all values of the internal eXp_O”é_’"" WE  the single events at each node. This happens, e.g., if we track
recovered this expected tendency, as shown in Fig. 3. Not

that the int diat | b that ai but b &ach walker in our model. In this case, given the node size
at the intermediate values above that given(Bybut be- distribution k(i), it is straightforward to measurg and v

low 1 are effective exponents, actual scaling breaks dOWI?jirectly from f;(t) by their definitions. Again, this has been

due to the crossover between them. : S
This approach can be reversed. Driving hides the microPOSSIbIe for stock marke(s], be_cause ?” individual trades .
: are documented as so called tick-by-tick data. Other possi-

scopic dynamics, because all systems display the UNIVerSeliities could be distributed computing or telephone net-

valuea=1. However, if it is possible to measure the internalWorkS where events take a lonaer time. while loas of activ-
exponeniz(AW/{W)<1), one can decide about the presence, ’ 9 ! 9

i . . i n be written instantly. It woul interestin heck
of impact inhomogeneity. It has been foufld, that for the ty can be written instantly. It would be interesting to chec

hardware level Internek=1/2. Inthis casefi(t) is the data the validity of our assumptions in these networks too.
flow through node at timet,(V(i)) is the mean size of the ~ The partial support of the Center for Applied Mathematics
passing data packets afid(i)) is their mean number per unit and Computational Physics of the BUTE is acknowledged.
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