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In many complex systems, for the activityf i of the constituents or nodesi a power-law relationship was
discovered between the standard deviationsi and the average strength of the activity:si ~ kf ila; universal
valuesa=1/2 or 1 werefound, however, with exceptions. With the help of an impact variable we present a
random walk model where the activity is the product of the number of visitors at a node and their impact. If the
impact depends strongly on the node connectivity and the properties of the carrying network are broadly
distributedsas in a scale-free networkd we find both analytically and numerically nonuniversala values. The
exponent always crosses over to the universal value of 1 if the external drive dominates.
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Complex systems usually consist of many interacting
units such that their scaffold is a network. The most puzzling
questions are usually the ones regarding the dynamics of
such systems. Examples range from trafficsvehicular or In-
ternetd through the biochemistry of the cell to markets which
are systems generated by human interactions. Due to its gen-
erality, the network aspect has turned out to be extremely
fruitful in these studies, but the dynamics is usually rather
individual, system dependent. However, recently an interest-
ing unifying feature was found in systems with multichannel
observations.

Processes taking place in many complex systems can be
characterized by generalized activitiesf istdù0, defined at
each constituent or nodei =1,… ,N. For a wide range of
systems, researchf1–3g has revealed power-law scaling be-
tween the mean and the standard deviation of the activity of
the nodes

si ~ kf ila, s1d

where by definition

si = Îksf i − kf ild2l. s2d

This is not unmotivated from equilibrium statistical phys-
ics. Many physical systems belong to the classa=1/2; in
most cases this is the fingerprint of equilibrium and the
dominance of internal dynamics. Examples of such behavior
are a computer chip or the hardware level Internetsthe net-
work of data transmissiond f1g.

One can show analytically the existence of a universality
class witha=1. This value always prevails in the presence of
a strong driving force, when the dominant factor is such
externally imposed dynamics. This limit is found for river
networks, highway traffic and the World Wide Webf1g.

It is instructive to recall that although only different as-
pects of the same system, the Internet and the Web fall into
separate categories. The former has a robust internal activity

even without outsideshumand interaction, due to automatic
queries, data transfer, etc. On the other hand, the latter con-
sists of Web pages whose activity is generated by external
demandsi.e., the clicks of usersd.

For such an analysis multichannel monitoring of a large
number of elements is needed with a possibly broad range of
kf il. A previous workf2g introduced a method of decompo-
sition to separate the effects of an external driving force from
the system’s internal dynamics originating from the constitu-
ents’ individual behavior and interactions. Furthermore,
when external driving was absent or subordinate,a=1/2
seemed to hold for every investigated system, though univer-
sality could not be proven. In fact, more recent studies have
shown that there are exceptions from this rule: Fluctuations
of stock market trading activitystraded volume times priced
are characterized bya<0.72 f3g. In this paper, we present a
generalization of a random walk model by Menezes and
Barabásif1g, which accounts for such anomalousa values
and clarifies their microscopic origins.

The model in Ref.f1g was motivated by the statistics of
Web page visitations and we will also use this language. Let
us take a scale-free Barabási-Albert network ofN nodes
sWeb pagesd f4,5g. First, we distributeW tokenssusers, walk-
ersd on the nodes randomly. In every time step every walker
jumps from its present site to a random neighbor of the site
along an edgeslinkd. The new feature is that if a user steps to
a site, it has to pay a certain valueVsid sexerts a certain
impactd, which depends on the degreeksid of the visited node
smore popular pages with more links cost more moneyd as a
power law

Vsid ~ ksidm. s3d

We must emphasize, that although this is a simplification, the
assumption is notad hoc. For example, the average activity
for a given stock was found to scale with the exponentm
<0.44 as a function of the capitalization of the companies
f8g, which, in a sense, can be identified with the nodes’
strength. This application will be discussed in detail.

We continue the diffusion forT steps and finally calculate
the total profit of every Web site, which equals theNsid num-
ber of visitations multiplied byVsid; these values will be the
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activities f ist=1d of the nodes on day 1. We iterate this pro-
cedure for the same network fort=1,… ,D days to generate
the whole time seriesf istd. The original variant presented in
Ref. f1g corresponds to the special casem=0: it only counts
Nsid for each node. Later we will address the case when the
Vsid values are allowed to fluctuate.

We expect a power-law scaling relationship such as

kNsidl ~ ksidn, s4d

i.e., the mean number of the visitations to a node is propor-
tional to its degree. Higher connected vertices should have
higher traffic. Stationary solution of the master equation
yieldsn=1 analytically, in line with Ref.f6g. Also, if initially
tokens are distributed uniformly, after the first step the ex-
pectation value of the number of tokens at any node will be
directly proportional to its degree. Therefore the model
reaches the stationary state in one step. For the sake of gen-
erality we will keep the notation for a general value ofn,
which could be generated by different dynamics.

We can write the mean profit of nodei as

kf il = kNsidVsidl ~ ksidm+n. s5d

Fluctuations can be expressed by the application of the cen-
tral limit theorem. As walkers do not interact, their visits are
independent, and thus for large enoughkNsidl and finite
kNsid2l the distribution converges to a Gaussian. Moreover,
the variance of the visits at nodei is sNi

2 =kfNsid−kNsidlg2l
~ kNsidl~ksidn. The variance of the signal detected on nodei
can then be written as

si
2 = sNi

2 Vsid2 ~ ksid2m+n, s6d

where the proportionality comes froms3d. Finally, one can
combines5d and s6d to get

a =
1

2
S1 +

m/n

m/n + 1
D . s7d

a is the internal dynamical exponent defined bys1d in the
absence of external forces.

We performed simulations of such a process and found
perfect agreement with the above calculation. We fixed
a Barabási-Albert network of N=2000 nodes,
W=200 tokens,T=100 steps per day, and averaged overD
=105 days. We also variedm=−0.5, …, 5.0. Examples for
the scaling relations1d are shown in Fig. 1f7g. There is a
clear dependence of the slope on the value ofm. The mea-
sured exponentsa, compared with the analytical formula are
shown in Fig. 2.

The right-hand side ofs7d is governed by the single pa-
rameterm /n. By settingm=0, we recover the original, non-
independent impacts anda=1/2. If m /n.0, the scaling ex-
ponent of fluctuations increases,a.1/2. As m /n→` , a
→1, which is the same exponent but due to a different
mechanism asa=1 arising from strong driving. Note that by
choosingm /n,0, a,1/2 values are also accessible.

This result is robust against fluctuations inV, i.e., if dif-
ferent users spend different amounts of money while visiting
the same Web page, provided

Vsid = kVsidlX ~ ksidmX. s8d

X is drawn independently from a fixed distribution for every
visitation of nodei. It is also assumed to have a finite second
moment.

The distributions ofNsid andVsid are independent and so
they factorize in s5d, whose formula hence remains un-
changed. In order to prove that scaling suggested bys6d also
persists, let us write

si
2 =KSo

n=1

N

Visnd −Ko
n=1

N

VisndLD2L , s9d

wheren runs for all theN visits to sitei during the day and
Visnd is the profit from thenth visit. By denotingon=1

N Visnd
as VN, its density function asPsVNd, and that ofNsid by
PsNd, it is possible to rewrites9d as

FIG. 1. Scaling of the standard deviation of node activity with
the mean signal of the same node. A single point in the graph
represents the average standard deviation of all nodes with approxi-
mately the same flux. Slopes on the log-log scale give the internal
dynamical exponenta. Varying the impact distribution by changing
m causes a continuous change ina, as expected froms7d.

FIG. 2. sColor onlined The values of the internal dynamical
exponenta as a function ofm governing the distribution of node-
dependent impacts. Circles show simulation resultssN
=2000 nodes,W=200 walkers,T=100 steps/day, averaged forD
=105 daysd. The solid line represents the analytical formulas7d for
n=1. By settingm=0, we recovera=1/2, which is observed for
several equilibrium systems. If one allows for node-dependent im-
pacts smÞ0d, nonuniversal behavior emerges anda can change
continuously between 0 and 1.
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si
2 = o

N=0

`

PsNdE
0

`

dVNPsVNdVN
2

− So
N=0

`

PsNd E dVNPsVNdVND2

. s10d

By both adding and subtracting the term
oN=0

` PsNdfe0
`dVNPsVNdVNg2, then applying the equality

e0
`dVNPsVNdVN=NkVsidl and that for any fixedN the vari-

ance ofVN is sVN

2 =NsV
2, one finally finds

si
2 = sNi

2 kVsidl2 + sVi
2 kNsidl ~ ksid2m+n. s11d

The final proportionality comes from similar arguments as in
the case ofs6d. In particular, we know thatsNi

2 ~ kNsidl
~ksidn. On the other hand, with respect to scaling with the
node degreeksid, we definedVsid2~ksid2m, while also sV

2

~ksid2m.
One can see explicitly the new source that contributes to

fluctuations. The first term, basically the same as before,
comes from diffusive dynamics. The second, additional term,
is the one that describes the effect of visit to visit variations
present in impactsVsid. Regardless of this more complicated
structure, the scaling ofsi

2 with the vertex degreeksid is
preserved, similarly tokf il. Thus the dynamical exponenta
is unaffected. Simulations based on various distributions ofX
confirmed this calculation.

Next, in order to analyze the behavior of the system under
the influence of an external drive, we allowed day to day
changes in the number of walkersW. Following Ref.f1g, we
introduced Wstd=kWl+DWstd, where DWstd is Gaussian
white noise with standard deviationDW f9g. This acts as an
external driving force and contributes to fluctuations. It is
known, that increasingDW toward the strongly driven limit
sDW/ kWl@1d, any system displays a crossover toa=1 as a
sign of the growing dominance of exogenous behavior. We
used the above set of parameters and variedDW/ kWl=5
310−3,…, 15. For all values of the internal exponents7d we
recovered this expected tendency, as shown in Fig. 3. Note
that the intermediate values above that given bys7d but be-
low 1 are effective exponents, actual scaling breaks down
due to the crossover between them.

This approach can be reversed. Driving hides the micro-
scopic dynamics, because all systems display the universal
valuea=1. However, if it is possible to measure the internal
exponentasDW/ kWl!1d, one can decide about the presence
of impact inhomogeneity. It has been foundf1g, that for the
hardware level Interneta=1/2. In this casef istd is the data
flow through nodei at time t ,kVsidl is the mean size of the
passing data packets andkNsidl is their mean number per unit

time. This shows, that across the nodes of this systemsrout-
ersd only the number of packets varies, but their size does not
sm=0d. This homogeneous dynamics can be expected: As the
same packets pass many computers, the mean of their sizes
can well be independent of node degree.

Although not readily represented as a network, a similar
analysis can be carried out on stock market dataf10g. Here,
f istd is the value of stocks of the companyi bought and/or
sold at timet ,kNsidl is the mean number of transactions per
unit time, andVsid is the value of stocks exchanged in a
single trade. The role of degreesnode sized is taken by com-
pany capitalization. In this case, it has been found thatn
<0.39 andm<0.44 f8g. This is direct evidence for the ex-
istence of scaling proposed ins3d. Accordingly, a has the
nontrivial value 0.72f3g, due to the presence of inhomoge-
neous impacts.

If the dynamics that generates the activitiesf istd is much
slower than the method used to record them, one can observe
the single events at each node. This happens, e.g., if we track
each walker in our model. In this case, given the node size
distribution ksid, it is straightforward to measurem and n
directly from f istd by their definitions. Again, this has been
possible for stock marketsf8g, because all individual trades
are documented as so called tick-by-tick data. Other possi-
bilities could be distributed computing or telephone net-
works, where events take a longer time, while logs of activ-
ity can be written instantly. It would be interesting to check
the validity of our assumptions in these networks too.

The partial support of the Center for Applied Mathematics
and Computational Physics of the BUTE is acknowledged.

FIG. 3. Measured values ofa as a function of the relative
strength of driving forcesDW/ kWld for several fixed values ofm
sN=2000 nodes,W=200 walkers,T=100 steps/day, averaged for
D=106 daysd. Although the internal valuesDW/ kWl!1d varies, all
systems display the universal behaviora=1 in the exogenous limit
sDW/ kWl@1d.
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